Duality between Probability and Optimization
نویسندگان
چکیده
Following the theory of idempotent measures of Maslov, a formalism analogous to probability calculus is obtained for optimization by replacing the classical structure of real numbers (R;+; ) by the idempotent semield obtained by endowing the set R [ f+1g with the \min" and \+" operations. To the probability of an event corresponds the cost of a set of decisions. To random variables correspond decision variables. Weak convergence, tightness and limit theorems of probability have an optimization counterpart which is useful to approximate Hamilton Jacobi Bellman (HJB) equation and to obtain asymptotics for this equation. The introduction of tightness for cost measures and its consequences is the main contribution of this paper. The link between the weak convergence and the epigraph convergence used in convex analysis is done. The Cramer transform used in the large deviation literature is de ned as the composition of the Laplace transform by the logarithm by the Fenchel transform. It transforms convolution into inf-convolution. Probabilistic results about processes with independent increments are then transformed into similar results on dynamic programming equations. Cramer transform gives new insight on the Hopf method used to compute explicit solutions of some HJB equations. It also explains the limit theorems obtained directly as the image of the classic limit theorems of probability. Bibliographic notes are given at the end of the paper.
منابع مشابه
A note on symmetric duality in vector optimization problems
In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".
متن کاملWEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملMin-Plus Probability Calculus
We study here the duality appearing between probability calculus and optimization by substituting the semifield (R∪{+∞},min,+) for the standard semiring (R+,+,×).
متن کاملExponential membership function and duality gaps for I-fuzzy linear programming problems
Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کامل